Cryptography

http://rumkin.com/tools/cipher/

Decrypt RSA

https://riptutorial.com/python/example/5809/encode-decode-to-hex-no-longer-available

P, Q, and E Known

import codecs
def egcd(a, b):
    x,y, u,v = 0,1, 1,0
    while a != 0:
        q, r = b//a, b%a
        m, n = x-u*q, y-v*q
        b,a, x,y, u,v = a,r, u,v, m,n
        gcd = b
    return gcd, x, y

def main():

    p = 7493025776465062819629921475535241674460826792785520881387158343265274170009282504884941039852933109163193651830303308312565580445669284847225535166520307
    q = 7020854527787566735458858381555452648322845008266612906844847937070333480373963284146649074252278753696897245898433245929775591091774274652021374143174079
    e = 30802007917952508422792869021689193927485016332713622527025219105154254472344627284947779726280995431947454292782426313255523137610532323813714483639434257536830062768286377920010841850346837238015571464755074669373110411870331706974573498912126641409821855678581804467608824177508976254759319210955977053997
    # cipher text
    ct = 44641914821074071930297814589851746700593470770417111804648920018396305246956127337150936081144106405284134845851392541080862652386840869768622438038690803472550278042463029816028777378141217023336710545449512973950591755053735796799773369044083673911035030605581144977552865771395578778515514288930832915182

    # compute n
    n = p * q

    # Compute phi(n)
    phi = (p - 1) * (q - 1)

    # Compute modular inverse of e
    gcd, a, b = egcd(e, phi)
    d = a

    print( "n:  " + str(d) );

    # Decrypt ciphertext
    pt = pow(ct, d, n)
    print( "pt: " + str(pt) )

    # Convert pt to ascii
    ptString = str(hex(pt))
    print(ptString[2:])
    decoded = codecs.decode(ptString[2:], 'hex')
    print("\n")
    print("The Decoded string is: " + bytes.decode(decoded, 'utf-8'))

if __name__ == "__main__":
    main()

I truly do not understand the math that is in this. It is all magic to me.

Last updated

Was this helpful?